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Abstract—Local-feature-based face recognition (FR) methods,
such as Gabor features encoded by local binary pattern, could
achieve state-of-the-art FR results in large-scale face databases
such as FERET and FRGC. However, the time and space com-
plexity of Gabor transformation are too high for many practical
FR applications. In this paper, we propose a new and efficient
local feature extraction scheme, namely monogenic binary coding
(MBC), for face representation and recognition. Monogenic
signal representation decomposes an original signal into three
complementary components: amplitude, orientation, and phase.
We encode the monogenic variation in each local region and
monogenic feature in each pixel, and then calculate the statis-
tical features (e.g., histogram) of the extracted local features.
The local statistical features extracted from the complementary
monogenic components (i.e., amplitude, orientation, and phase)
are then fused for effective FR. It is shown that the proposed MBC
scheme has significantly lower time and space complexity than the
Gabor-transformation-based local feature methods. The extensive
FR experiments on four large-scale databases demonstrated the
effectiveness of MBC, whose performance is competitive with and
even better than state-of-the-art local-feature-based FR methods.

Index Terms—Face recognition, Gabor filtering, LBP, mono-
genic binary coding, monogenic signal analysis.

I. INTRODUCTION

A UTOMATIC face recognition (FR) has been extensively
studied in the past two decades, yet it is still an active re-

search topic, partially because of its many challenges in practice
such as uncontrolled environments, occlusions and variations in
pose, illumination, expression and time. FR has a wide range of
applications, including entertainment, smart cards, information
security, law enforcement, access control and video surveillance
[1], [2]. Various methods have been proposed for facial feature
extraction and classification, among which the representatives
include subspace learning (e.g., Eigenface [5], Fisherface [6],
Laplacianfaces [37], 2DPCA-based discriminant analysis [17]),
discriminative models for age invariant FR [3], [4], Gabor fea-
ture based classification (GFC) [7], local binary pattern (LBP)
and its variants [8]–[11], [22], [23], local appearance and shape
based methods for 3-D FR [24], [38], the recently developed
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Fig. 1. Pipeline of local statistical feature-based face recognition (LSF-FR).

sparse representation based methods [29], [30], [35], [39], [40],
and the like.
Unlike many appearance-based FRmethods, which are either

holistic feature based (e.g., Eigenface and Fisherface) or local
feature based (e.g., GFC), the adoption of LBP in FR [8] triggers
the use of local statistical feature (LSF) in the FR field. Fig. 1
shows the pipeline of LSF based FR. One can see that LSF-FR
methods have two main phases: statistical histogram feature
extraction and statistical feature combination. Histogram fea-
ture extraction could be further divided into three steps: feature
map generation (e.g., original image, Gabor feature), pattern
map coding (e.g., LBP) and subregion histogram computing.
Almost all the LSF-FR methods [8]–[10], [11], [22], [23] have
similar procedures of subregion histogram computing (i.e., ex-
tracting the statistical information of pattern feature in each sub-
region), which shows certain robustness to local deformations
(e.g., pose, expression, and occlusion) of face images. However,
different schemes of feature map generation and pattern map
coding lead to different LSF-FR methods.
The well-known LBP operator [8] directly encodes the image

intensity to extract image local pattern features. In order to over-
come the sensitiveness of intensity to image variations (e.g.,
illumination), Zhang et al. [9] proposed to extract directional
Gabor magnitude features at multiple scales, and then apply
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LBP to the Gabor magnitude maps for robust LSF. The studies
of Gabor phase based LSF-FR were conducted in [10], [11],
[22]. Zhang et al. [10] adopted multiscale Gabor phase to take
the place of Gabor magnitude in [9], and the global and local
variations of real part and imagery part of complex Gabor fil-
tering coefficients were encoded in [11]. Recently, Xie et al. [22]
utilized XOR (exclusive or) operator to encode the local varia-
tion of Gabor phase, and then fused Gabor-magnitude local pat-
tern and Gabor-phase local pattern. This scheme achieves very
promising FR results.
For the second phase of LSF-FR, many feature combination

methods have been proposed [8]–[11], [22], [26], [36]. Themost
commonly used strategy is weighting the histogram feature ex-
tracted in different blocks [8]–[11]. In [26] and [36] the kernel
linear discriminant analysis was used to reduce the dimension
of histogram feature, and in [22] a block-based Fisher linear dis-
criminant (BFLD) method was proposed to extract the low-di-
mensional discriminative features. Compared with weighting
based histogram feature combination, the discriminant subspace
learning methods [26], [36], [22] are much more preferred be-
cause they can not only improve the feature discrimination, but
also greatly reduce the storage space.
Despite the great success of Gabor feature-based LSF-FR

methods [9]–[11], [22], the expenses of Gabor transformations
in these methods are also rather high, including both the compu-
tational cost and the storage space, because the Gabor transfor-
mations of an image need to be implemented at multiple scales
and orientations. For example, 5-scale and 8-orientation Gabor
transformations are used in [7], [9]–[11], [22]. Therefore, for a
single image 80 convolutions (40 real convolutions and 40 im-
agery convolutions) are required to generate the Gabor features
(e.g., 40 Gabor magnitude feature maps). The many convolu-
tions and the Gabor feature maps make Gabor feature genera-
tion a process of high time and space complexity, preventing its
wide acceptance in practical applications.
In our previous work [23], we investigated the use of

monogenic signal analysis [12] for LSF-FR, and our proposed
monogenic signal decomposition based local feature extraction
has much lower time and space complexity than the Gabor
filtering based methods [9], [11] but leads to competitive
performance in FR. As a two-dimensional generalization of
one-dimensional analytic signal representation, monogenic
signal representation decomposes an image into amplitude,
phase, and orientation components, which represent the signal
energetic, structural, and geometric information, respectively
[12]. Different from Gabor transformation, monogenic signal
representation does not use steerable filters to extract mul-
tiple-orientation features, and thus it has much lower time (e.g.,
3 convolutions on each scale) and space (e.g., 3 feature maps
on each scale) complexity than Gabor transformations.
To further exploit the discrimination information embedded

in the amplitude, phase and orientation components of mono-
genic signal representation, in this paper we propose an
efficient and effective LSF-FR scheme, namely monogenic
binary coding (MBC), which encodes the local pattern in
different monogenic feature maps. The BFLD [22] is then
adopted to extract the low-dimensional discriminative features
from the generated MBC feature maps of amplitude, phase and

orientation, respectively. Finally, the three types of LSFs are
fused for face classification. One of the most important advan-
tages of the proposed MBC scheme is its low time and space
complexity while achieving very competitive performance with
the Gabor-feature based LSF-FR methods [9]–[11], [22]. The
proposed MBC method is validated on benchmark large scale
face databases, including Multi-PIE [49], FERET [14], [41],
FRGC 2.0 [13] and PolyU-NIR [28]. The experimental results
verified the efficiency and effectiveness of the proposed MBC
based LSF-FR method.
The rest of the paper is organized as follows. Section II intro-

duces briefly the monogenic signal representation. Section III
presents in detail the MBC algorithm. Section IV describes the
whole scheme of MBC based LSF-FR. Section V presents the
experimental results, and Section 6 concludes the paper.

II. MONOGENIC SIGNAL REPRESENTATION

Monogenic signal is an important generalization of the ana-
lytic signal from one dimension (1-D) to two dimensions (2-D),
and it preserves the desired properties of 1-D analytic signal.
One prominent property of monogenic signal representation
lies in that its feature extraction process (phase, amplitude
and orientation estimation) is truly rotation-invariant [32].
Monogenic signal representation has been used in many appli-
cations such as face recognition [23], scale-space analysis [31],
and texture classification [33]. In this section, we first briefly
introduce the analytic signal, and then describe the monogenic
signal representation.

A. Analytic Signal Representation

The analytic signal is a complex-valued representation in 1-D
signal processing. Given a real valued 1-D signal , its com-
plex analytic signal is defined as

(1)

where , and refers to the
Hilbert transform kernel in the spatial domain. In general the
Hilbert transform is performed in frequency domain and the re-
sponse of in frequency domain is

.
The analytic signal representation allows one to retrieve the

local amplitude and local phase :

(2)

(3)

where the local phase is invariant with respect to the local
energy of the signal but changes if the local structure varies,
and the local amplitude is invariant with respect to the
local structure but represents the local energy. Table I shows the
relation between feature type and phase angle [18], respectively.

B. Monogenic Signal Representation

Monogenic signal was introduced by Felsberg and Sommer
in 2001 [12] to generalize the analytic signal from 1-D to 2-D.
The monogenic signal is built around the Riesz transform which
is a natural multidimensional extension of the Hilbert transform
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Fig. 2. Toy examples of monogenic phase. (a) Two image structures; (b) their shapes shown in 3-D; and (c) the monogenic phases of them.

TABLE I
SOME 1-D FEATURES AND THEIR CORRESPONDING PHASE ANGLES (DEGREE)

[19], [32]. The Riesz transform is the scalar-to-vector signal
transformation whose frequency response is . In 2-D,
the Riesz transform can be expressed as

(4)

where with is the input signal, and filters
and are characterized by the 2-D frequency responses

and with . It is easy
to obtain the spatial representation of Riesz kernel, which is

(5)

For an image , its monogenic signal is defined as the
combination of and its Riesz transform

(6)

In (6), is called the real part of the monogenic signal, and
and the two imagery parts. Based on the real and

imagery parts, the original image signal could be orthogo-
nally decomposed into three components, local amplitude, local
phase and local orientation, which are defined as [12]

(7)

where describes the local energetic information, describes
the local structural information, and describes the geometric
information.
The local phase and local orientation compose the monogenic

phase of a 2-D signal [12]. In contrast to 1-D case, the mono-
genic phase includes additional geometric information, which
indicates the main orientation in ideal case (i.e., the signal is
constant in one direction). Two toy examples of image features
(e.g., step and roof) are shown in Fig. 2. Fig. 2(a) shows the step
edge and roof edge features in 2-D image, with Fig. 2(b) the cor-
responding 3-D shapes of them. The geometric information (i.e.,
the main orientation) is illustrated by local orientation shown in
Fig. 2(a), with the structure information shown by local phase
in Fig. 2(c).

C. Multiresolution Monogenic Signal Representation

In practice, the signals are of finite length, and we need to
perform band-pass filtering to an image before applying the
Riesz transforms. On the other side, as indicated by [12], band-
pass filtering has the benefits of maintaining the invariance-
equivariance property of signal decomposition. Here the invari-
ance-equivariance property [21], [12] means that energy (local
amplitude) and structure (local phase on local orientation) are
independent information.
Classical Gabor filters are commonly used as band-pass fil-

ters for that they could offer the best simultaneous localization
of spatial and frequency. However, these filters overlap more in
low frequencies than in high frequencies, leading to a nonuni-
form coverage of the Fourier domain. Moreover, Gabor filters
have nonzero means, and thus they are affected by direct cur-
rent (DC) components [34]. An alternative to the Gabor filters
is the log-Gabor filters proposed in [20]. The log-Gabor fil-
ters discard the DC components and can overcome the band-
width limitation of traditional Gabor filters. Meanwhile, it has a
Gaussian shaped response along the logarithmic frequency scale
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Fig. 3. (a) Face image and its monogenic representation on one scale: (b) am-
plitude component, (c) orientation component, and (d) phase component.

instead of a linear one. This allows more information to be cap-
tured in the high frequency band and endows desirable high pass
characteristics.
The frequency response of log-Gabor filters can be described

as

(8)

where is the center frequency and is the scaling factor of
the bandwidth. In order for filters with the constant shape ratio,
we set as a constant as suggested in [43]. It is worth noting
that a log-Gabor filter with a 3-octave bandwidth has the same
spatial width as that of a 1-octave Gabor filter, demonstrating
its ability to capture broad spectral information with compact
support [42].
The band-pass monogenic signal representation is defined as

(9)

where , and represents the 2-D
inverse Fourier transform. Similarly, the local amplitude ,
orientation and phase of a 2-D signal can be computed
by [12]

(10)

Since log-Gabor filters are band-pass filters, usually multi-
scale monogenic representation is required to fully describe a
signal. In multiscale log-Gabor filters, the parameters and
can be rewritten as

(11)

where is the minimal wavelength, is the multiply factor
of wavelength, is the scale index, and is the ratio .
As an example, Fig. 3 shows the monogenic representation

of a face image on one scale. We can see that the amplitude
components reflect the local variation of gray value; while the
facial local structures are well captured in the local phase and
orientation components.

D. Multiscale Monogenic Signal Representation versus
Multiscale Gabor Wavelet Representation

Traditional 2-D Gabor filters are highly jointly localized
in spatial location, orientation and frequency. Usually 5-scale
and 8-orientation Gabor filters are used in face recognition

[7], [9]–[11], [22], [36], where the Gabor features at each
orientation are extracted by using steerable filters.
It is easy to see that both multiscale 2-D Gabor wavelet (i.e.,

Gabor filters) representation and multiscale monogenic signal
representation are redundant. For multiscale Gabor wavelets,
the redundancy comes from two aspects: one is the redundancy
across multiple scales, and the other is the redundancy across
multiple orientations on each scale. However, for multiscale
monogenic signal representation, the redundancy only comes
from the multiscale representation, because on each scale the
local amplitude, local phase, and local orientation are orthog-
onal. Althoughmultiscale Gabor filtering is effective for FR, the
high cost of Gabor representation (80 convolutions for complex
Gabor filtering across 5 scales and along 8 orientations) limits
its application in practice. On the other side, although the multi-
scale monogenic signal representation has no redundancy along
orientation, this does not mean that it is not effective for face
representation. Our previous work in [23] has shown that the
combination of orientation and amplitude components of mono-
genic signal representation could achieve even better recogni-
tion rates than the multiscale Gabor wavelet representation but
with significantly lower time and space complexity.

III. MONOGENIC BINARY CODING

In this section, we describe the proposed algorithm of
coding the monogenic signal features, which contains two
parts: monogenic local variation coding and monogenic local
intensity coding. The first part encodes the variation between
the central pixel and its surrounding pixels in a local patch,
while the second part encodes the value of central pixel itself.
Obviously, these two parts are complementary.

A. Binary Coding of Monogenic Local Variation

Refer to Fig. 4, for each local patch (e.g., 3 3 neighborhood)
a typical local variation coding usually consists of the following
three stages: binary quantification, binary sequence generation,
and binary sequence to decimal value conversion. In the pro-
cedures of local variation coding, the binary sequence genera-
tion and binary sequence to decimal value conversion are the
common stages in most binary pattern coding methods, such as
LBP [8], [16], LGBP [9], HGPP [11] and LGXP [22]. An ex-
ample of these two steps is shown in the second row of Fig. 4.
The decimal value of the binary code is defined as follows:

(12)

where denotes the central pixel position in the local patch
of feature map, denotes the binary code (0 or 1) of the th
neighbor of the central pixel and is the number of involved
neighbors (we fix ).
However, the first step of local variation coding, i.e., binary

quantization, usually depends on the property of feature map,
and should be designed based on the physical meaning of the
feature. For example, in the binary quantization of LBP [8]
which regards original image as feature map, the surrounding
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Fig. 4. Typical process of local variation coding.

pixel is coded as 1 if its value is not less than the value of central
pixel; otherwise, the surrounding pixel is coded to 0. In HGPP
[11], the surrounding pixel is coded to 0 if it has the same sign
as that of the central pixel; otherwise, it is quantified to 1. The
monogenic signal representation has three components: local
amplitude, local orientation and local phase. The local orien-
tation and local phase compose monogenic phase. According
to the properties of local amplitude and monogenic phase, dif-
ferent binary quantization strategies are utilized to generate the
binary code.
1) Local Variation of Monogenic Amplitude: The local am-

plitude of monogenic signal representation is a measurement of
local energetic information. For example, high amplitude usu-
ally indicates higher energetic local features (e.g., edges, lines,
textures). Therefore, the local variation of monogenic amplitude
could be coded by comparing the amplitude value of central lo-
cation with those of its neighbors, which is similar to LBP [8].
For a local patch, let’s denote by the amplitude value of
the central pixel , and by the amplitude value of the th
neighbor of the central pixel. Usually, we normalize the range
of the amplitude to [0, 255]. Then the amplitude binary code of
the th neighbor is defined as

(13)

Consequently, the amplitude binary code, denoted by
, of the central pixel is formed as

.
2) Local Variation of Monogenic Phase: For 2-D signals,

monogenic phase is decomposed into local orientation and
local phase. The local orientation describes the geometric
information, more specifically the main orientation of the local
structure, and the local phase describes the information of the
local structure along the main orientation (i.e., structure type
as shown in Table I). Both local orientation and local phase
are represented by angle degree. In this paper, we unwrap both
of them into the range of [0, 360). Because the angle of local
phase or local orientation indicates the structural or geometric
information, it is more meaningful to compare the feature type
than to directly compare the angle’s degree. Therefore, the
binary coding of local phase and local orientation variations
should adopt a different strategy from that of local amplitude.
Inspired by the coding strategy of Gabor phase in HGPP [11]
and LGXP [22], we consider two cases when comparing the
monogenic features: one is that the local phases/orientations

are the same or close enough to each other and the other is that
the local phases/orientations are different.
In order to increase the robustness of binary coding, we firstly

divide the range [0, 360) into intervals (we fix in this
paper). If two phases/orientations belong to the same interval,
they are believed to be similar local features; otherwise, they
are regarded as different. For a local patch, denote by the
local phase of the central pixel , and by the phase of its
th neighbor. The phase binary code of the th neighbor is

(14)

where is the quantification function, defined as

(15)

Then the local phase binary code, denoted by , of the central
pixel is formed as .
Similarly, let’s denote by the local orientation of the

central pixel , and by the local orientation of its th
neighbor. The orientation binary code of the th neighbor is

(16)

And then the local orientation binary code, denoted by
, of the central pixel is formed as

.

B. Binary Coding of Monogenic Local Imagery Intensity

Almost all the LSF-FR methods, including LBP [8], LGBP
[9] and LGXP [22], code the variation information of a patch
for pattern recognition but omit the feature information of the
central pixel in the local patch. In fact, the information of cen-
tral pixel itself can have discriminative information which may
not be carried out by the local variation. For instance, the two
pixels having the same local variation pattern may have very
different intensities. In [25], Guo et al. proposed to quantify the
local intensity of central pixel based on the average gray level of
the whole image for texture classification; however, this binary
quantization scheme may not be robust, especially for FR with
illumination changes.
In the monogenic signal representation, the Riesz transform is

asymmetric and it can suppress the DC component [12]. Such
properties make the imaginary part of Riesz transform able to
enhance the feature intensity while being robust to disturbances



YANG et al.: MONOGENIC BINARY CODING: EFFICIENT LOCAL FEATURE EXTRACTION APPROACH TO FACE RECOGNITION 1743

Fig. 5. Quadrant bit coding of monogenic imaginary feature at each location.

such as illumination changes. Therefore, in this paper we pro-
pose to use the imagery part of monogenic signal representation
to encode the local feature intensity information of the central
pixel. Since there are two components (e.g., and )
in the imagery part of monogenic signal representation, the bi-
nary coding leads to a quadrant bit for the monogenic imagery
feature at a location, as illustrated in Fig. 5.
Refer to Fig. 5, the imagery part of monogenic signal

representation at pixel is encoded into two bits,
, by the following rule:

(17)

where and (refer to (9) please) are respectively the
horizontal and vertical Riesz transform outputs of monogenic
signal representation.

C. Monogenic Binary Code (MBC)

With the coding procedures described in Sections III-A and
III-B, for each of the amplitude, phase and orientation compo-
nents of the monogenic signal representation, we can have a
monogenic binary code (MBC) map. We denote by MBC-A,
MBC-P and MBC-O the code maps for amplitude, phase and
orientation, respectively. At each location, MBC-A, MBC-P
and MBC-O are formed by combining the local imagery inten-
sity code and the local variation code as follows

(18)

(19)

(20)

It can be seen that when the 8 closest neighbors of a pixel
are involved in local variation coding, each MBC pattern will
have 10 bits. Then the number of possible patterns for each
MBC is 1024, which is larger than that of previous binary coding
methods such as LBP, LGBP, HGPP and LGXP (refer to Table II
please). The more patterns can characterize more accurately the
local signal structure; at the same time, it will also make the
generated histogram in each subregion a little sparser. However,

TABLE II
NUMBERS OF PATTERNS IN MBC-X , LBP, AND

GABOR-RELATED CODING METHODS (E.G., LGBP, HGPP, AND LGXP) WHEN
THE EIGHT CLOSEST NEIGHBORS OF A PIXEL ARE INVOLVED IN CODING

this sparser histogram can still have enough (even higher) dis-
crimination capability and result in very good FR performance
(please refer to the section of experimental results).
The above three MBC maps can be used individually as the

feature for face classification, and they can also be used together
to enhance the FR performance, as we will describe in the next
section.

IV. FACE RECOGNITION BY MONOGENIC BINARY CODE

A. Face Recognition by Individual MBC

The statistical information of image local areas can be de-
scribed by local histograms, which are robust to the image oc-
clusion and variations of pose, expression, and noise, etc. After
computing the multiscale MBC-A, MBC-P and MBC-O fea-
ture maps of the face image, we can construct three histograms,

and , through the following pro-
cedures. For each kind of pattern map on each scale, it is parti-
tioned into multiple nonoverlapping regions, and then the local
histogram is built for each subregion. Finally, all the local his-
tograms across different scales and different regions are con-
catenated into a single histogram vector to represent the face
image. Formally, the and his-
tograms are formulated as

(21)

where is the number of subregions on each scale; denotes
the scale index; and is the histogram of feature map in
the th subregion on scale .
To be identical to other LSF based FRmethods [9]–[11], [22],

the similarity between two histograms and is defined as
their intersection:

(22)

where is the number of bins in the histogram, and and
denote the frequency of the th bin in and , respec-

tively. By measuring the histogram intersection, the similarity
of and histogram features
from gallery and probe face images could be computed for
classification.

B. Face Recognition by Fused MBC

It is obvious that different subregions in the face image
will have different discriminative power for FR. Therefore,
many methods [8]–[11], [23] assign different weights to the
histograms of different subregions before matching. This is
actually a feature combination process and could improve
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the FR rate. However, this weighting scheme cannot reduce
the feature dimensionality. Considering that the kernel linear
discrimination analysis adopted in [26], [36] has high time
complexity, we adopt the BFLD [22] scheme to reduce the
histogram feature dimension while enhancing its discrimina-
tion. The MBC feature map is first partitioned into
blocks, and then each block is further partitioned into
subregions. In each subregion, the histogram of feature map on
each scale is built as described in Section IV-A. The histogram
feature of each block is the concatenation of all the histograms
of its subregions. Then for the histogram feature of each block,
LDA [6] is used to learn a projection matrix from the training
set, and then the dimensionality reduced histogram feature can
be obtained by using this projection matrix.
Denote by and the dimensionality re-

duced features of in the th block of a probe face
image and a gallery image, respectively, where

. Since and are
not histogram features anymore, we compute their similarity
using the cosine distance:

(23)

where is the inner product operator. The cosine distance is
widely used in face recognition [22], [26], [36], and in [45] it
has been reported that the cosine distance performs better than

and Mahalanobis distances in most face recognition ex-
periments. In addition, using cosine distance could also make
the comparison with [22] fair. The similarity between the whole
probe and gallery images is computed as

(24)

Themonogenic amplitude, phase and orientation components
describe the energetic, structural and geometric information of
a 2-D signal, respectively, and they are complementary to each
other. Therefore, it is useful to fuse these three types of features
for a more robust FR result. In this paper, we use the simple
weighted average to fuse the three similarities, i.e.,

and , as follows

(25)

where is the weight. Note that in (25) we let the weights as-
signed to and equal because the local orien-
tation and local phase have almost the same performance in var-
ious databases. Therefore, there is only one weight parameter,
i.e., , to be determined in our fusion scheme, and accordingly
we call the FR scheme with similarity score as fused
MBC, denoted by MBC-F.

V. EXPERIMENTAL RESULTS

In this section, we first discuss the parameter settings, and
then give the time and space complexity comparison between
MBC and some representative and state-of-the-art LSF-FR
methods, including LGBP [9], HGPP [11] and LGXP [22].
Finally, we evaluate the proposed MBC algorithm on four large

scale benchmark face databases: Multi-PIE [49], FERET [14],
[41], FRGC 2.0 [13] and PolyU-NIR [28]. The Matlab source
code of the proposed MBC algorithm can be downloaded at
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.

A. Parameter Settings

There are some parameters in different stages of MBC, e.g.,
multiscale log-Gabor filtering, subregion histogram computing,
and feature combination by BFLD [22]. In order to be consistent
with other methods and provide a fair comparison, no prepro-
cessing is used in all the following experiments.
Refer to Section II-C, the parameters in multiscale log-Gabor

filtering are theminimal wavelength , the ratio factor ,
themultiply factor of wavelength and the number of scale (i.e.,
the scale index ). In our paper, if no specific instruction, we fix

, and the number of scale as
3. Because one-scale log-Gabor filter could capture more fre-
quency information than one-scale Gabor filter [42], [43], the
number of scales in multiscale log-Gabor filtering is often set to
3 [23], [47], [48]. Since the number of scales will affect much
the time and space complexity of the proposed method, we per-
form two experiments on Fb and DupI datasets of the FERET
database to discuss the selection of scale parameter .
The detailed experimental settings on Fb and DupI are pre-

sented in Section V-D. We change the number of scales from 1
to 4, and plot the FR rates of MBC versus the scale parameter
in Fig. 6. It could be seen that in most cases (especially for the
test in DupI), the recognition rate will benefit from the increase
of from 1 to 3 or 4. It is interesting to see that in the test on Fb,
there are some fluctuations as the scale number increases. This
is possibly because the test data in Fb has little variation com-
pared to the gallery set Fa, so it is not necessary to use multiscale
representation. Nevertheless, considering the balance of recog-
nition rate and complexity, particularly in more challenging FR
scenarios (e.g., DupI), we prefer to set the scale number to 3 in
all the experiments.
In the stage of subregion histogram computing, the whole

image needs to be divided into blocks, which is fur-
ther divided into subregions. In each subregion, the
histogram is extracted; and in each block, the discriminative fea-
ture is extracted by BFLD. In the stage of fusing, three similari-
ties, i.e., and , will be averaged by
using the weight . If no specific instruction, we fix

, and the dimensionality of discriminative
feature in each block as 200.

B. Time and Space Complexities

In the representative LSF based FR methods [8]–[11], [22],
[23], the feature map generation, pattern map coding, histogram
computing, and histogram similarity computing are the main
time-consuming parts. The number of image convolution di-
rectly decides the computational burden of feature map gen-
eration, while the number of pattern maps directly affects the
running time of other parts and space complexity of algorithms.
Fig. 7 compares the time and space complexity of MBC (in-
cluding MBC-A, MBC-O and MBC-P) and MBC-F with some
state-of-the-art LSF-FR methods, including LGBP [9], HGPP
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Fig. 6. Curves of FR rate versus the number of scales by the proposed MBC methods. (a) MBC on Fb; (b) MBC BFLD and MBC-F on Fb; (c) MBC on DupI;
(d) MBC BFLD and MBC-F on DupI.

Fig. 7. Comparison of the time and space complexities among LGBP [9],
HGPP [11], LGXP [22], LGB&XP [22] (fusing LGXP and LGBP), and the
proposed MBC (MBC denotes any one of MBC-A, MBC-P, and MBC-O) and
MBC-F.

[11], LGXP [22], and LGB&XP (fusing Gabor magnitude and
phase parts in [22]).
All the methods of LGBP, HGPP, LGXP, and LGB&XP use

Gabor transformations (with 5 scales and 8 orientations) to gen-
erate feature maps, which means that 80 convolutions (40 real
convolutions and 40 imagery convolutions) are needed in pro-
cessing a single image. However, for the process of feature gen-

eration in the proposed MBC and MBC-F, only 9 convolutions
are executed (1 log-Gabor filtering and 2 Riesz transformations
on each scale) [12], [23], [32], [33]. Fig. 7 clearly shows that
the time complexity of MBC in feature map generation is only
1/9 times of that of [9]–[11], [22].
In the pattern map coding, both LGBP and LGXP encode

40 feature maps into 40 pattern maps, and HGPP produces
90 pattern maps, including 10 global phase pattern maps and
80 local pattern maps, with LGB&XP outputting 40 Gabor
magnitude and 40 Gabor phase pattern maps. In comparison,
our proposed MBC-A, MBC-P and MBC-O each only needs to
encode 3 monogenic pattern maps. Even the fusing version of
MBC, i.e., MBC-F, only has 9 pattern maps together. Therefore
the proposed MBC has significantly lower time and space
complexity than the previous Gabor-based ones [9]–[11], [22]
in pattern map coding, as illustrated in Fig. 7.
Considering that the time and space complexity for histogram

generating depends on the number of patternmaps, the proposed
MBC methods will also need much less computational cost and
space in histogram feature generation than [9]–[11], [22].
In similarity computing, when the original histogram features

are used, according to the number of pattern maps, the time
and space complexity of proposed MBC scheme is much less
than that of LGBP, HGPP and LGXP. However, when BFLD
[22] is used to reduce the dimensionality of histogram features,
the dimensionality of projected discriminative features for all
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Fig. 8. Subject in Multi-PIE database. (a) Training samples with only illumina-
tion variations. (b) Testing samples with surprise expression and illuminations
in Session 2. (c) Testing samples with squint expression and illuminations in
Session 2. (d) and (e) Testing samples with smile expression and illumination
variations in Sessions 1 and 3, respectively.

methods, including MBC and LGBP [9], HGPP [11], LGXP
[22], is nearly the same as each other. Therefore, when cou-
pled with BFLD [22], all the methods would have similar time
and space complexity in the phase of similarity computing. Note
that BFLDwill increase the computational complexity in offline
learning stage, but it will not add computational burden in the
online recognition stage.Wewill compare the empirical running
time of the competing methods in Section V-C.

C. Experiments on the Multi-PIE Expression Database

In this section, we use the large-scale Multi-PIE [49] to verify
the effectiveness and efficiency ofMBCwithout considering di-
mensionality reduction. All the 249 subjects in Session 1 are
used as the training set in this experiment. To make the FR more
challenging, four subsets with both illumination and expression
variations in Sessions 1, 2 and 3 are used for testing. For the
training set, we use the 7 frontal images with extreme illumi-
nations and neutral expression (refer to
Fig. 8(a) for examples). For the testing set, 4 typical frontal im-
ages with illuminations and different expressions
(smile in Sessions 1 and 3, squint and surprise in Session 2) are
used (refer to Fig. 8(b) for examples with surprise in Session
2, Fig. 8(c) for examples with squint in Session 2, Fig. 8(d) for
examples with smile in Session 1, and Fig. 8(e) for examples
with smile in Session 3). We crop and normalize the images to
100 82. Here the programming environment isMatlab version

TABLE III
FACE RECOGNITION RATES (%) AND AVERAGE RUNNING TIME (SECOND)

ON THE MULTI-PIE EXPRESSION DATABASE

Fig. 9. (a) Examples of Gabor feature and monogenic amplitude feature maps.
(b) Similarity scores by HGPP and MBC-A, where the left image is a template
image, the middle image is a test image which is from the same class as the
template image, and the right test image is from a different class.

R2011a. The desktop used is of 1.86 GHz CPU and with 2.99G
RAM.
Here LBP [8] is used as the baseline method, and we com-

pare the proposed MBC with the state-of-the-art methods, such
as LGBP [9], HGPP [11] and LGXP [22]. Table III lists the face
recognition rates and average running time of all the competing
methods. It is clear to see that LBP is the fastest one, but with
the worst recognition rate. The proposedMBC has very compet-
itive recognition rates as LGBP, HGPP and LGXP. Especially
forMBC-A, it has the highest recognition rates in the testing sets
of “smile-S1”, “smile-S3” and “squint-S2”. The running time of
MBC is about 1 second for each image, less than 1/10 times of
that of LGBP, HGPP and LGXP. It is noted that HGPP has the
longest running time. The running time results are very consis-
tent with our analysis in Section V-B.
In this experiment, it can be seen that MBC-A outperforms

LGBP and LGXP in all cases. Particularly,MBC-A outperforms
much LGBP, HGPP and LGXP on Smile-S3. This is because
that on the Smile-S3 dataset, the Gabor features from different
subjects may not have enough discrimination. Fig. 9(a) shows
some examples of Gabor feature and monogenic amplitude fea-
ture maps. One can see that the Gabor feature maps of the two
images, which are from two different classes, are very similar,
while the monogenic amplitude feature maps of them can have
clear difference. Fig. 9(b) shows the similarity scores between
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Fig. 10. Some samples of normalized face images of FERET.

TABLE IV
RECOGNITION RATES (%) BY USING LOCAL VARIATION CODE ONLY AND
BY USING THE COMBINATION OF LOCAL VARIATION CODE AND IMAGERY

INTENSITY CODE ON THE FB AND DUP1 PROBE SETS

two test images and a template image byHGPP andMBC-A.We
can see that MBC-A could lead to the correct classification, but
Gabor feature based HGPP will lead to a misclassification. Note
that the MBC-A similarity score values are usually much lower
than those of HGPP because the histogram feature of MBC-A
is sparser than that of HGPP. However, this does not reduce the
discrimination capability of MBC-A.

D. Experiments on the FERET Database

The FERET database [14], [41] is often used to validate an al-
gorithm’s effectiveness because it contains many kinds of image
variations. By taking Fa subset as a gallery, the probe subsets
Fb and Fc are captured with expression and illumination vari-
ations. Especially, DupI and DupII consist of images taken at
different times. For some people, the time intervals are more
than two years between the gallery set and DupI or DupII set.
The facial portion of each image is cropped based on the loca-
tions of eyes. The cropped face images are then normalized to
150 130 pixels. Fig. 10 shows some examples of normalized
face images. Here the projection matrix of BFLD is learnt from
the training set which has 1 002 frontal images from 429 sub-
jects and we set the number of blocks as .
In order to illustrate that the combination with local imag-

inary intensity code could improve much the local variation
code, in Table IV we report the recognition rates by using local
variation code only and by using the combination of local vari-
ation code and local intensity code on the probe sets of Fb and
DupI. It can be clearly seen that in all the tests, the latter one
outperforms much the former one. Without BFLD, the com-
bination with local intensity code could improve in average
4.6% the recognition rate for MBC-A, 1.8% forMBC-P, and 3%
for MBC-O, respectively. With BFLD, the combination with

TABLE V
RECOGNITION RATES (%) OF THE PROPOSED MBC METHODS

ON THE FERET PROBE SETS

TABLE VI
RECOGNITION RATES (%) OF DIFFERENT METHODS ON THE

FERET FACE DATABASE

local intensity code could still improve in average 3.8% for
MBC-A, 2.2% for MBC-P, and 1.5% for MBC-O, respectively.
This shows that the local imaginary code could provide com-
plementary information to the local variation code.
Table V lists the FR results by each individual MBC (e.g.,

MBC-A, MBC-P or MBC-O), their combinations with BFLD,
and the fused MBC (MBC-F). Meanwhile, we give the results
by LGBP and LGBP BFLD reported in [22] as the baseline
methods. From Table V, we can see that all the proposed mono-
genic codes, MBC-A, MBC-P or MBC-O, could achieve higher
recognition rate than LGBP, especially with the biggest im-
provement of about 11% in DupI and DupII for MBC-O. BFLD
could improve the performance of all methods. When com-
bined with BFLD, MBC-A, MBC-P or MBC-O could achieve
higher recognition rates than the method LGBP BLFD in
most cases. In this experiment, the weight in MBC-F is set
to 0.45 since the amplitude component performs a little worse
than the monogenic phase part.
The FR results of MBC-F and other state-of-the-art LSF-FR

methods, including the feature fusion version of LGXP [22],
Tan’s method in [26], Zou’s method in [27], HGPP [11], LGBP
[9] and LBP [8], are compared in Table VI. It can be seen that
the proposed MBC-F is the best one for Fb and Fc. In DupI
and DupII, the recognition rate of MBC-F is slightly lower than
the method in [22]. However, it should be noted that our pro-
posed MBC-F method has much lower time and space com-
plexity than the method in [22]. Therefore, the overall perfor-
mance of MBC-F is better.

E. Experiments on the FRGC Database

FRGC 2.0 [13] is a very large scale face database, which con-
sists of 50 000 recordings divided into training and validation
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Fig. 11. Some samples of normalized face images of FRGC 2.0.

TABLE VII
VERIFICATION RATES BY THE PROPOSED MBC METHODS ON FRGC 2.0

WHEN %

partitions. The FRGC challenge problem consists of six exper-
iments, which evaluate FR performance on various conditions,
e.g., controlled or uncontrolled lighting and background, 3-D
imagery, and multistill imagery [13]. There are three masks,
which could be used to generate three receiver operator char-
acteristic (ROC) curves. ROC1 could verify FR on the images
collected within semesters, while ROC2 and ROC3 evaluate FR
on the images collected within a year and between semesters,
respectively.
In our experiments, we learn the projection matrix of BFLD

based on the given training set (12 776 images of 222 persons)
and implement our tests on the 1st and 4th experiments, denoted
by Exp.1 and Exp.4. Exp.4 is much more difficult than Exp.1
since the query images in Exp.4 are taken under uncontrolled
environment. All the face images are cropped based on the man-
ually located eye centers provided by the original database and
normalized to 168 128 pixels. Some samples are shown in
Fig. 11. Here is set as 4. In order for a stable and effec-
tive discriminative feature extraction by dimensionality reduc-
tion, BFLD usually requires that the input should have more
features. For the feature of monogenic signal representation, the
local amplitude (i.e., in (10)) is a compact composition of
three partial features (i.e., , and in (10)). In order
to capture more information in amplitude, for MBC-A BFLD
in Exp4, instead of directly encoding on the amplitude, we first
encode the local variations of , and , and then
in each block we concatenate the three kinds of histogram fea-
tures. Finally we apply BFLD to the concatenated higher dimen-
sional histogram feature. Although a higher dimensional his-
togram feature of monogenic amplitude is generated, the time
and space complexity is only slightly increased, and the dimen-
sion of the final discriminative feature generated by BFLD does
not increase.
Similar to Table V, we list the verification rates of different

MBC based methods when the FAR is 0.1% in Table VII. It
can be seen that MBC could achieve much better performance
than LGBP in most cases. However, for Exp.4, all MBC and

Fig. 12. ROC3 curves of different methods on Exp4 of FRGC 2.0 databases.

TABLE VIII
VERIFICATION RATES (%) BY DIFFERENT METHODS ON FRGC 2.0

FACE DATABASE

LGBP methods have low validation rates, not larger than 20%.
When BLFD is used to extract the discriminative features, all
the methods have great improvements, e.g., more than 60% for
MBC-A and LGBP.We could also see that MBC BLFD, espe-
cially MBC-A BFLD, has very competing performance with
LGBP but with much lower complexity. The ROC3 curves of
MBC BFLD and MBC-F are plotted in Fig. 12, which clearly
show that MBC-F could improve the final performance by
fusing the complementary monogenic information.
The recognition results of MBC-F and other state-of-the-art

methods, including the fusion version of LGXP [22], Tan’s
method in [26], Huang’s method in [44], Liu’s method in
[45], Liu’s method in [46], Su’s method in [15], are listed in
Table VIII. In the table, all the results for the comparison are
directly cited from the related papers. We can see that MBC-F
achieves very close results to the best results reported in [15]
and [22]. However, considering that both Xie’s method in [22]
and Su’s method in [15] adopt multiscale and multiorientation
Gabor transformation to generate features, MBC-F has much
lower complexity than them, which further validates the effec-
tiveness of the proposed techniques.

F. Experiments on the Polyu NIR Database

The PolyU-NIR face database [28] is a large scale near-in-
frared face database, consisting of 350 subjects, each subject
providing about 100 samples. Various variations of face images,
such as expression, pose, scale, focus, time, are involved in the
capturing. In this paper, we do three tests following the experi-
ment setting in [28]. These three subsets are Exp. 1 (419 training
samples, 574 gallery samples and 2 762 probe samples), Exp. 2
(1 876 training samples, 1 159 gallery samples and 4 747 probe
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Fig. 13. Some samples of normalized face images of Exp.3 on the PolyU NIR
database.

TABLE IX
RECOGNITION RATES BY THE PROPOSED MBC METHODS ON THE

POLYU-NIR DATABASE

TABLE X
RECOGNITION RATES (%) BY DIFFERENT METHODS ON THE

POLYU-NIR PROBE SETS

samples), and Exp. 3 (576 training samples, 951 gallery sam-
ples and 3 648 probe samples). Some samples of Exp. 3 are
shown in Fig. 13. Because the face images are normalized to
64 64 pixels, which are much smaller than that of Multi-PIE,
FERET and FRGC, we set and the di-
mensionality of discriminative feature as 100.
Table IX lists the recognition rates by MBC methods and the

baseline method, Gabor-DBC, proposed in [28]. From Table IX,
we can see that all the MBCmethods are better than the baseline
method; and BFLD could further improve MBC’s performance.
The recognition results of MBC-F and other state-of-the-art re-
sults reported in [28] are shown in Table X. It can be seen that
the proposed MBC-F outperforms the second best method by
1.2% in Exp.1, 2.2% in Exp.2 and 2.8% in Exp.3. Meanwhile,
compared to these Gabor feature based methods, the proposed
MBC methods have much lower time and space complexity.

G. Discussions

From the above complexity analysis and experimental re-
sults, it can be seen that the proposed MBC has competitive
accuracy with or higher accuracy than the Gabor feature based
methods (e.g., LGBP [9], HGPP [11], and LGXP [22]), while it
has much lower cost (e.g., less than 1/10 times running time on
the MPIE database). This merit of MBC comes from two parts:
the power of monogenic signal representation and the effective-
ness of MBC’s pattern coding strategy.

Like Gabor wavelet representation, monogenic signal repre-
sentation can effectively extract the discrimination information
embedded in the original signal by decoupling the local energy
(local amplitude) and structure (local phase and local orien-
tation). Different from Gabor features, which are extracted
along several orientations by using steerable filters, in mono-
genic signal representation the local orientation is the main
orientation of the linear structure with large support, and the
local phase describes the structure along the main orientation
[12]. This strategy of extracting only the information along the
dominant orientation is somewhat similar to the maximum-like
pooling mechanism in the visual processing in cortex [50],
and it leads to a compact but effective representation of the
image. Our experimental results validate that monogenic signal
analysis is very suitable for face image representation, probably
because human facial local structures can be well characterized
along one dominant orientation. In addition, the adaptation of
log-Gabor filters in multiscale monogenic signal representation
makes it efficient in capturing the multiscale information.
The promising performance of MBC also comes from the

proposed binary coding scheme, which is well suited to describe
the monogenic signal representation. In MBC, we not only en-
code the local variation of monogenic amplitude and mono-
genic phase, but also encode the monogenic local imagery in-
tensity to provide complementary information to the local vari-
ation. As shown in Table IV, this coding strategy could ex-
ploit more useful information of monogenic signal represen-
tation. In addition, the three parts of MBC: MBC-A, MBC-P
and MBC-O, encode the energetic, structural and geometric in-
formation of a 2-D signal, respectively, which are complemen-
tary to each other. The experimental results show that MBC on
monogenic amplitude, orientation and phase could individually
achieve high recognition rate on different datasets. More impor-
tantly, a strategy by using a weighted average to fuse these three
similarity scores (e.g., MBC-A, MBC-P and MBC-O) could
further improve the recognition accuracy and achieve state-of-
the-art FR performance.

VI. CONCLUSION

We proposed a novel face representation model, namely
monogenic binary coding (MBC), based on the monogenic
signal representation. One of the best merits of MBC is that
it has much less time and space complexity than the widely
used Gabor transformation based local feature extraction
method. Through multiscale monogenic signal representation,
three kinds of features (e.g., local amplitude, local orientation
and local phase) can be generated, and then encoded by the
proposed monogenic local variation coding and monogenic
imagery intensity coding procedures. The produced MBC
pattern maps are used to compute the statistical features (e.g.,
histogram), which are then used to measure the similarity for
face recognition. The extensive experiments on the benchmark
face databases, including FERET, FRGC 2.0, Multi-PIE and
PolyU-NIR, clearly showed that the proposed MBC methods
not only have significantly lower time and space complexity
than the state-of-the-art Gabor feature based face recognition
methods, but also have very competitive or even better recog-
nition rates.
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